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§  SUNDIALS Overview 
§  ODE integration 

•  CVODE 
•  ARKode 

§  DAE integration 
•  IDA 

§  Sensitivity Analysis 
§  Nonlinear Systems 

•  KINSOL 
•  Fixed point solver 

§  SUNDIALS: usage, applications, and availability 

Outline 
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SUite of Nonlinear and 
DIfferential-ALgebraic Solvers 

§  Suite of time integrators and nonlinear solvers 

•  ODE and DAE time integrators with forward and adjoint sensitivity 
capabilities, Newton-Krylov nonlinear solver 

•  Written in C with interfaces to Fortran and Matlab 

•  Designed to be incorporated into existing codes 

•  Modular implementation: users can supply own data structures  

-  Linear solvers / preconditioners 

- Vector structures – core data structure for all the codes 

- Supplied with serial and MPI parallel structures 

§  Freely available, released under BSD license 

https://computation.llnl.gov/casc/sundials/main.html 
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LLNL has a strong history of nonlinear 
solver and time integration research 

SUNDIALS package evolved from innovation in methods and 
software 
§  Newton solvers evolved from the first Newton-Krylov 

method and code for PDEs 
§  ODE codes from odepack (> 200K downloads)  
§  DAE codes from DASSL  

2009 
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SUNDIALS offers Newton solvers, time 
integration, and sensitivity solvers 

  CVODE: implicit ODE solver, y’ = f(y, t) 
— Variable-order, variable step BDF (stiff) or implicit Adams (nonstiff) 
— Nonlinear systems solved by Newton or functional iteration 
— Linear systems by direct (dense or band) or iterative solvers 

  IDA: implicit DAE solver, F(t, y, y’) = 0 
— Variable-order, variable step BDF 
— Nonlinear system solved by Newton iteration 
— Linear systems by direct (dense or band) or iterative solvers 

  CVODES and IDAS: sensitivity-capable (forward & adjoint) 

  Adaptive time step and order selection minimize local truncation error 

  KINSOL: Newton solver, F(u) = 0 
—  Inexact and Modified (with dense solve) Newton 
— Linear systems by iterative or dense direct solvers 

  Iterative linear Krylov solvers: GMRES, BiCGStab, TFQMR 
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§  Variable order and variable step size Linear Multistep Methods 

§  Adams-Moulton (nonstiff); K1 = 1, K2 = k, k = 1,…,12 
§  Backward Differentiation Formulas [BDF] (stiff); K1 = k, K2 = 0, k = 1,…,5 
§  Rootfinding capability - finds roots of user-defined functions, gi(t,y) 
§  The stiff solvers execute a predictor-corrector scheme: 

 
 

CVODE solves  

Explicit predictor to give yn(0)  

 

 

Implicit corrector with yn(0) as 
initial iterate 
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Convergence and errors are measured 
against user-specified tolerances 

§  An absolute tolerance is specified for each solution component, ATOLi 

§  A relative tolerance is specified for all solution components, RTOL  

§  Norm calculations are weighted by: 

§  Bound time integration error with: 

     

    The 1/6 factor tries to account for estimation errors 
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Time steps are chosen to minimize the 
local truncation error 

§  Time steps are chosen by: 
•  Estimate the error: E(Δt ) = C(yn - yn(0)) 
- Accept step if ||E(Δt)||WRMS < 1 
- Reject step otherwise 

•  Estimate error at the next step, Δt’, as  

•  Choose next step so that ||E(Δt’)|| WRMS < 1 
§  Choose method order by: 

•  Estimate error for next higher and lower orders 
•  Choose the order that gives the largest time step meeting the 

error condition 
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Nonlinear systems at each time step will 
require nonlinear solves 

§  Use predicted value as the initial iterate for the nonlinear solver 
§  Nonstiff systems: Functional iteration 

§  Stiff systems: Newton iteration 

ODE 

 

 

DAE 
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CVODE offers Newton, Newton-Krylov and 
function iteration as nonlinear solvers 

§  Non-stiff systems can use function iteration, or a fixed point solver 

§  Stiff systems generally require a Newton nonlinear solver 

•  SUNDIALS provides dense solvers or hooks to LAPACK 

- Can reuse Jacobian over multiple steps -> modified Newton 

•  Newton-Krylov solvers only require matrix-vector products 

- Approximations to the matrix-vector product are used, 

- Matrix entries need never be formed 
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We are adding Runge-Kutta (RK) ODE time 
integrators to SUNDIALS via ARKode 

§  RK methods are multistage: allow high order accuracy without long 
step history (enabling spatial adaptivity) 

§  Implicit RK methods require multiple nonlinear solves per time step 
§  Additive RK methods apply a pair of explicit (ERK) and implicit 

(DIRK) methods to a split system, allowing accurate and stable 
approximations for multi-rate problems. 

§  Can decompose the system into “fast” and “slow” components to be 
treated with DIRK and ERK solvers 

§  ARKode provides 3rd to 5th order ARK, 2nd to 5th order DIRK and 2nd 
to 6th order ERK methods; also supports user-supplied methods. 

§  Applies advanced error estimators, adaptive time stepping, Newton 
and fixed-point iterative solvers 

§  ARKode will be released with SUNDIALS later this year 

http://faculty.smu.edu/reynolds/arkode 
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ARKode solves  

§  Variable step size additive Runge-Kutta Methods: 

 

§  ERK methods use AI=0;  DIRK methods use AE=0, 
§      , i = 1,…,s  are the inner stage solutions, 
§        is the time-evolved solution, and 
§        is the embedded solution (used for error estimation), 
§  M may be the identity (ODEs) or a non-singular mass matrix (FEM). 
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Initial value problems (IVPs) come in the 
form of ODEs and DAEs 

§  The general form of an IVP is given by 

00 )(
0),,(

xtx
xxtF
=

=

  If              is invertible, we solve for    to obtain an ordinary 
differential equation (ODE), but this is not always the best 
approach 

  Else, the IVP is a differential algebraic equation (DAE) 

  A DAE has differentiation index i if i is the minimal number of 
analytical differentiations needed to extract an explicit ODE 

xF ∂∂ / x
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IDA solves F(t, y, y’) = 0 

§  C rewrite of DASPK [Brown, Hindmarsh, Petzold] 
§  Variable order / variable coefficient form of BDF 
§  Targets: implicit ODEs, index-1 DAEs, and Hessenberg index-2 

DAEs 
§  Optional routine solves for consistent values of y0 and y0’  

•  Semi-explicit index-1 DAEs, differential components known, 
algebraic unknown OR all of y0’ specified, y0 unknown 

§  Rootfinding capability - finds roots of user-defined functions, gi(t,y,y’) 
§  Nonlinear systems solved by Newton-Krylov method 

§  Optional constraints: yi > 0, yi < 0, yi ≥ 0, yi ≤ 0 
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Sensitivity Analysis 

§  Sensitivity Analysis (SA) is the study of how the variation in the output 
of a model (numerical or otherwise) can be apportioned, qualitatively or 
quantitatively, to different sources of variation in inputs. 

§  Applications: 
•  Model evaluation (most and/or least influential parameters), Model 

reduction, Data assimilation, Uncertainty quantification, 
Optimization (parameter estimation, design optimization, optimal 
control, …) 

§  Approaches: 
•  Forward sensitivity analysis 
•  Adjoint sensitivity analysis 
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Sensitivity Analysis Approaches 

Computational cost: 
(1+Np)Nx   increases with Np 
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Computational cost: 

(1+Ng)Nx    increases with Ng  
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Adjoint Sensitivity Analysis 
Implementation 

§  Solution of the forward problem is required for the adjoint problem à 
need predictable and compact storage of solution values for the 
solution of the adjoint system 

§  Cubic Hermite or variable-degree polynomial interpolation 
§  Simulations are reproducible from each checkpoint 
§  Force Jacobian evaluation at checkpoints to avoid storing it 
§  Store solution and first derivative  
§  Computational cost: 2 forward and 1 backward integrations 

t0 tf 
ck0 ck1 ck2         … 

Checkpointing 
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KINSOL solves F(u) = 0 

§  C rewrite of Fortran NKSOL (Brown and Saad) 
§  Inexact Newton solver: solves J Δun = -F(un) approximately 
§  Modified Newton option (with direct solves) – this freezes the 

Newton matrix over a number of iterations 
§  Krylov solver: scaled preconditioned GMRES, TFQMR, Bi-CGStab 

•  Optional restarts for GMRES 
•  Preconditioning on the right: (J P-1)(Ps) = -F 

§  Direct solvers: dense and band (serial & special structure) 
§  Optional constraints: ui > 0, ui < 0, ui ≥ 0 or ui ≤ 0 
§  Can scale equations and/or unknowns 
§  Backtracking and line search options for robustness 
§  Dynamic linear tolerance selection 
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Fixed point and Picard iteration will be 
added to KINSOL in the next release 

§  Define an iterative scheme to solve F(h) = h - G(h) = 0 as, 

§  Picard iteration is a fixed point method formed from writing F as the 
difference of a linear, Lu, and a nonlinear, N(u), operator 

§  Fixed point iteration has a global but linear convergence theory 
§  Requires G to be a contraction 1,)()( <−≤− γγ yxyGxG
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KINSOL will have both Picard and fixed point iterations with acceleration 
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SUNDIALS provides many options for 
linear solvers 

§  Iterative Krylov linear solvers 
•  Result in inexact Newton solver 
•  Scaled preconditioned solvers: GMRES, Bi-CGStab, TFQMR 
•  Only require matrix-vector products 
•  Require preconditioner for the Newton matrix, M 

§  Two options require serial environments and some pre-defined 
structure to the data 
•  Direct dense  
•  Direct band 

§  Jacobian information (matrix or matrix-vector product) can be 
supplied by the user or estimated with finite difference quotients 
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We are developing a SUNDIALS interface to 
sparse direct solvers 

§  Requires serial vector kernel now – only for transfer of RHS 
information for Jacobian systems 

§  Will generalize to more generic vector interface in the future 
§  Matrix information is passed via new SUNDIALS sparse_matrix 

structure which utilizes a compressed sparse column format 
§  First instantiation is an interface to SuperLU_MT (multi-threaded 

version of SuperLU) 
§  Will also develop interfaces to KLU (serial) and possibly PARDISO 

(threaded) 
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Preconditioning is essential for large 
problems as Krylov methods can stagnate 

§  Preconditioner P must approximate Newton matrix, yet be 
reasonably efficient to evaluate and solve. 

§  Typical P (for time-dep. ODE problem) is 
§  The user must supply two routines for treatment of P: 

•  Setup: evaluate and preprocess P (infrequently) 
•  Solve: solve systems Px=b (frequently) 

§  User can save and reuse approximation to J, as directed by the 
solver 

§  Band and block-banded preconditioners are supplied for use with 
the supplied vector structure 

§  SUNDIALS offers hooks for user-supplied preconditioning 
•  Can use hypre or PETSc or … 

JJJI ≈− ~,~γ
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The SUNDIALS vector module is generic 

§  Data vector structures can be user-supplied 
§  The generic NVECTOR module defines: 

•  A content structure (void *) 
•  An ops structure – pointers to actual vector operations supplied by 

a vector definition 
§  Each implementation of NVECTOR defines: 

•  Content structure specifying the actual vector data and any 
information needed to make new vectors (problem or grid data) 

•  Implemented vector operations 
•  Routines to clone vectors 

§  Note that all parallel communication resides in reduction operations: 
dot products, norms, mins, etc. 
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SUNDIALS provides serial and parallel 
NVECTOR implementations 

§  Use is optional 
§  Vectors are laid out as an array of doubles (or floats) 
§  Appropriate lengths (local, global) are specified 
§  Operations are fast since stride is always 1 
§  All operations provided for both serial and MPI parallel cases 
§  Can serve as templates for creating a user-supplied vector 
§  OpenMP and pThreads vector kernels coming soon.  Preliminary 

performance tests indicate that 10K length required to see benefit 
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SUNDIALS provides Fortran interfaces 

§  CVODE, IDA, and KINSOL 
§  Cross-language calls go in both directions: 
§  Fortran user code ßà interfaces ßà CVODE/KINSOL/IDA 

§  Fortran main à interfaces to solver routines 
§  Solver routines à interface to user’s problem-defining routine and 

preconditioning routines 

§  For portability, all user routines have fixed names 
§  Examples are provided 
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SUNDIALS provides Matlab interfaces 

§  CVODES, KINSOL, and IDAS 
§  The core of each interface is a single MEX file which interfaces to 

solver-specific user-callable functions 
§  Guiding design philosophy: make interfaces equally familiar to both 

SUNDIALS and Matlab users 
•  all user-provided functions are Matlab m-files 
•  all user-callable functions have the same names as the 

corresponding C functions  
•  unlike the Matlab ODE solvers, we provide the more flexible 

SUNDIALS approach in which the 'Solve' function only returns the 
solution at the next requested output time. 

§  Includes complete documentation (including through the Matlab help 
system) and several examples 
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SUNDIALS code usage is similar across 
the suite 

§  Have a series of Set/Get routines to set options 
§  For CVODE with parallel vector implementation: 

  
 #include “cvode.h” 
 #include “cvode_spgmr.h” 
 #include “nvector_*.h” 

 
 y = N_VNew_*(n,…); 
 cvmem = CVodeCreate(CV_BDF,CV_NEWTON); 
 flag = CVodeSet*(…); 
 flag = CVodeInit(cvmem,rhs,t0,y,…); 
 flag = CVSpgmr(cvmem,…); 
 for(tout = …) { 
    flag = CVode(cvmem, …,y,…);  } 

 
 NV_Destroy(y); 
 CVodeFree(&cvmem); 
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SUNDIALS has been used worldwide in applications 
from research and industry 

§  Power grid modeling (RTE France, ISU) 

§  Simulation of clutches and power train parts 
(LuK GmbH & Co.) 

§  Electrical and heat generation within battery cells 
(CD-adapco) 

§  3D parallel fusion (SMU, U. York, LLNL) 
§  Implicit hydrodynamics in core collapse 

supernova (Stony Brook) 
§  Dislocation dynamics (LLNL) 
§  Sensitivity analysis of chemically reacting flows 

(Sandia) 

§  Large-scale subsurface flows (CO Mines, LLNL) 

§  Optimization in simulation of energy-producing 
algae (NREL) 

§  Micromagnetic simulations (U. Southampton) 

Magnetic reconnection 

Core collapse 
supernova 

Dislocation dynamics 

Subsurface flow 

More than 3,000 
downloads each year 
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Availability 

Web site: 
Individual codes download  
SUNDIALS suite download 
User manuals 
User group email list 

 

 

The SUNDIALS Team:  
Alan Hindmarsh, Radu Serban,  
Dan Reynolds,  Carol Woodward,  
and Eddy Banks 

Open source BSD license 
https://computation.llnl.gov/casc/sundials 

Publications 
https://computation.llnl.gov/casc/sundials/
documentation/documentation.html 


